DBMS Viva-Ques(Unit wise)

Unit-1: Introduction to Fundamentals of DBMS

1. What are the primary components of a DBMS?

• **Answer:** The primary components include the storage manager, query processor, and transaction manager.

2. Explain the concept of data independence in DBMS.

• **Answer:** Data independence refers to the ability to modify the schema definition in one level without affecting the schema definition in the next higher level.

3. What are the different types of constraints in a relational database?

• Answer: Constraints include primary key, foreign key, unique, check, and not null constraints.

4. Describe the purpose of database applications.

• **Answer:** Database applications are designed to store, retrieve, and manage data efficiently for various business or organizational needs.

5. What is the architecture of a DBMS? Explain briefly.

• **Answer:** The DBMS architecture consists of the interface, data management, and application management components, each responsible for handling specific tasks such as data storage, querying, and transaction processing.

6. Discuss the role of data models in DBMS.

• **Answer:** Data models provide a way to represent and organize data, defining the structure, relationships, and constraints of the data stored in a database.

Unit-2: Database Design and ER Model

- 1. What is the Entity-Relationship (ER) model?
 - **Answer:** The ER model is a conceptual data model that represents entities, attributes, and relationships among entities in a database.
- 2. Explain the concept of an ER diagram.

• **Answer:** An ER diagram is a visual representation of entities, attributes, and relationships in a database schema.

3. What are weak entity sets in ER modeling?

• **Answer:** Weak entity sets depend on another entity (owner entity) for their existence and cannot be uniquely identified by their attributes alone.

4. Discuss the importance of constraints in ER modeling.

• **Answer:** Constraints ensure data integrity by enforcing rules on the relationships and attributes of entities in the database schema.

5. What are the key design issues in ER modeling?

• **Answer:** Design issues include entity and attribute selection, relationship representation, and constraint definition to accurately model the real-world scenario.

6. Explain extended ER features briefly.

 Answer: Extended ER features include specialization/generalization, aggregation, and categorization of entities and relationships beyond basic ER modeling.

Unit-3: Relational Databases

1. Describe the relational model in database management.

• **Answer:** The relational model organizes data into tables (relations) where each table consists of rows (tuples) and columns (attributes), representing entities and their attributes.

2. What are fundamental relational algebra operations?

• **Answer:** Fundamental operations include selection, projection, Cartesian product, union, set difference, and join operations.

3. Explain the purpose of Data Definition Language (DDL) statements in SQL.

• **Answer:** DDL statements define the database schema structure, including creating, altering, and dropping tables and defining constraints.

4. Differentiate between DDL and DML statements in SQL.

- Answer: DDL (Data Definition Language) statements define and manage database schema, whereas DML (Data Manipulation Language) statements manipulate data within the database.
- 5. What are JOIN operations in SQL? Provide examples.

Answer: JOIN operations combine rows from two or more tables based on a related column between them (e.g., INNER JOIN, LEFT JOIN, RIGHT JOIN).

6. Discuss the role of Views in relational databases.

• Answer: Views are virtual tables derived from one or more base tables and are used to simplify complex queries and provide security by restricting access to certain data.

Unit-4: SQL (DDL)

- 1. What is the purpose of Data Definition Language (DDL) in SQL?
 - **Answer:** DDL is used to define, modify, and manage database objects such as tables, indexes, and constraints.
- 2. Explain the basic structure of SQL queries.
 - Answer: SQL queries consist of clauses such as SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, which together retrieve and manipulate data from databases.
- 3. Describe the implementation of CREATE statement in SQL.
 - **Answer:** The CREATE statement is used to create database objects such as tables, indexes, views, and databases themselves.

4. Discuss the purpose of ALTER statement in SQL.

• Answer: The ALTER statement modifies existing database objects, such as adding or dropping columns from a table, altering constraints, or renaming objects.

5. What is the role of DROP statement in SQL?

• **Answer:** The DROP statement removes database objects like tables, views, indexes, or databases themselves from the database schema.

6. Explain the use of RENAME statement in SQL.

• **Answer:** The RENAME statement is used to rename an existing database object, such as renaming a table or column within a table.

Unit-5: SQL (DML)

1. What are the main categories of SQL commands?

 Answer: SQL commands are categorized into Data Definition Language
(DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).

2. Explain the purpose of DML commands in SQL.

• **Answer:** DML commands (SELECT, INSERT, UPDATE, DELETE) are used to manipulate data stored in the database tables.

3. How does the SELECT statement work in SQL?

• **Answer:** The SELECT statement retrieves data from one or more database tables based on specified criteria and returns a result set.

4. Discuss the implementation of INSERT statement in SQL.

• **Answer:** The INSERT statement adds new rows of data into a specified table in the database.

5. What is the role of DELETE statement in SQL?

• **Answer:** The DELETE statement removes existing rows from a table based on specified conditions.

6. Explain the purpose of UPDATE statement in SQL.

• **Answer:** The UPDATE statement modifies existing data in a table based on specified conditions.

Unit-6: Relational Languages

1. What is Tuple Relational Calculus in relational databases?

• **Answer:** Tuple Relational Calculus is a non-procedural query language where queries are expressed as sets of tuples that satisfy a certain condition.

2. Describe Domain Relational Calculus in relational databases.

• Answer: Domain Relational Calculus is another form of relational calculus where queries are expressed as sets of domains (atomic values) that satisfy certain conditions.

3. What is Query by Example (QBE) in relational databases?

• **Answer:** Query by Example (QBE) is an interactive query language where users specify queries by example rather than by composing SQL statements.

4. Explain the role of Data Log in relational databases.

• Answer: Data Log is a rule-based language used to specify complex queries and database constraints.

5. What are Set Operations in relational databases?

• **Answer:** Set operations in SQL (UNION, INTERSECT, EXCEPT) are used to combine results from multiple queries or tables based on set theory operations.

6. Discuss Aggregate Functions in SQL.

• **Answer:** Aggregate functions (SUM, AVG, COUNT, MIN, MAX) perform calculations on a set of values and return a single value as a result.

Unit-7: Relational Database Design

1. What are Atomic Domains in database design?

- **Answer:** Atomic domains refer to attributes that cannot be divided further into smaller parts and represent the simplest form of data types.
- 2. Explain the concept of First Normal Form (1NF) in database normalization.
 - Answer: 1NF requires that each column in a table must contain atomic (indivisible) values and that each column must contain only one value from the set of possible values for that column.

3. Discuss Functional Dependency theory in relational databases.

• Answer: Functional Dependency (FD) is a constraint between two sets of attributes in a relation from a database that helps in designing the database schema.

4. What is Database Decomposition in relational database design?

• **Answer:** Database decomposition is the process of breaking down a single relation into multiple relations to achieve higher normal forms and reduce redundancy.

5. Explain the concept of Multivalued Dependency in database design.

- **Answer:** Multivalued Dependency (MVD) exists when one attribute determines another set of attributes that are not dependent on each other.
- 6. Discuss the database design process briefly.
 - Answer: The database design process involves requirements gathering, conceptual design (ER modeling), logical design (conversion to relational schema), normalization, physical design, and implementation.

Unit-8: Transaction Management

1. What is a Transaction in database management?

- **Answer:** A transaction is a logical unit of work that contains one or more database operations (queries, updates) that must be executed atomically.
- 2. Explain the concept of Transaction State in database transactions.
 - **Answer:** The transaction state represents the current status of a transaction, which can be active, partially committed, committed, or aborted (rolled back).

3. How does a DBMS ensure Atomicity and Durability of transactions?

Answer: Atomicity ensures that either all operations in a transaction are successfully completed (committed) or none of them are (rolled back).
Durability ensures that once a transaction is committed, its changes are permanently saved in the database, even in case of system failures.

4. Discuss the challenges of Concurrent Execution in transaction management.

• Answer: Concurrent execution allows multiple transactions to run simultaneously, leading to challenges such as data consistency, resource contention, and transaction isolation.

5. Explain the concept of Serializability in transaction management.

• **Answer:** Serializability ensures that the execution of transactions in a concurrent environment produces the same result as if they were executed sequentially, ensuring data consistency.

6. What are the techniques used for implementing Isolation in transaction management?

 Answer: Isolation levels (Read Uncommitted, Read Committed, Repeatable Read, Serializable) control the visibility of changes made by concurrent transactions to ensure each transaction sees a consistent view of data.

Unit-9: Concurrency Control

1. Explain the concept of Lock-based protocols in concurrency control.

• **Answer:** Lock-based protocols use locks (shared and exclusive) to control concurrent access to data items, ensuring that transactions execute without interference.

2. What are Timestamp-based protocols in concurrency control?

• Answer: Timestamp-based protocols use timestamp values assigned to transactions to determine their serializability order and ensure conflict resolution.

3. Discuss Validation-based protocols in concurrency control.

• **Answer:** Validation-based protocols validate transactions against a schedule before committing them, ensuring serializability and preventing conflicts.

4. How does a DBMS handle Deadlock in concurrency control?

 Answer: DBMS uses deadlock detection and prevention mechanisms (timeout-based, wait-for graph) to identify and resolve deadlocks by rolling back one or more transactions.

5. Explain the challenges of Insert and Delete operations in concurrency control.

• **Answer:** Insert and delete operations can lead to complexities in maintaining data consistency and concurrency due to their impact on indexes and data distribution.

6. Discuss Weak Levels of Consistency in distributed databases.

• **Answer:** Weak levels of consistency (e.g., eventual consistency) trade off immediate consistency for availability and partition tolerance in distributed databases.

Unit-10: SQL (DCL/TCL)

1. What is the purpose of Data Control Language (DCL) in SQL?

• Answer: DCL statements (GRANT, REVOKE) manage permissions and access rights on database objects to control user access and security.

2. Explain the implementation of GRANT statement in SQL.

Answer: The GRANT statement assigns specific privileges (e.g., SELECT, INSERT) to users or roles on database objects.

3. Discuss the role of REVOKE statement in SQL.

• **Answer:** The REVOKE statement revokes previously granted privileges from users or roles, restricting their access to database objects.

4. What is the purpose of Transaction Control Language (TCL) in SQL?

• **Answer:** TCL statements (COMMIT, ROLLBACK, SAVEPOINT) manage transaction processing and ensure data integrity and consistency.

5. Explain the implementation of COMMIT statement in SQL.

• Answer: The COMMIT statement saves all changes made by transactions since the last COMMIT or ROLLBACK statement to make them permanent in the database.

6. Discuss the role of ROLLBACK statement in SQL.

• **Answer:** The ROLLBACK statement undoes all changes made by the current transaction and restores the database to its state before the transaction began.

Unit-11: Recovery System

1. Describe the classification of Failure in recovery systems.

• Answer: Failures in recovery systems are classified into transaction failures (user errors) and system failures (hardware or software errors).

2. Explain the storage structure used in recovery systems.

• **Answer:** Recovery systems use a log-based storage structure to record changes made by transactions before they are applied to the database.

3. Discuss the concept of Recovery and Atomicity in recovery systems.

• **Answer:** Recovery ensures that transactions either complete successfully (commit) or leave no trace (rollback) to maintain atomicity and database consistency.

4. Explain the process of Log-based recovery in recovery systems.

• **Answer:** Log-based recovery uses the transaction log to redo or undo changes made by transactions during recovery, ensuring database consistency.

5. How does a recovery system handle recovery with concurrent transactions?

• **Answer:** Recovery systems use techniques such as undo-redo logging and checkpoints to manage recovery efficiently in the presence of concurrent transactions.

6. Discuss Buffer Management in recovery systems.

• **Answer:** Buffer management ensures efficient data retrieval and storage during transaction processing and recovery, optimizing database performance.

Unit-12: Distributed Databases

1. What are Distributed Databases?

 Answer: Distributed Databases are databases that store data across multiple computers or nodes in a network, providing scalability, reliability, and improved performance.

2. Explain the concept of Data Fragmentation in distributed databases.

• **Answer:** Data fragmentation divides tables into smaller fragments (horizontal, vertical, or hybrid) distributed across nodes to improve query performance and manageability.

3. Discuss Replication Techniques used in distributed databases.

• **Answer:** Replication techniques copy data across multiple nodes to improve availability, fault tolerance, and load balancing in distributed databases.

4. What is Semi Join in distributed databases?

• Answer: Semi Join retrieves only the necessary columns from one table when the corresponding rows exist in another table, reducing data transfer and improving query performance.

5. Differentiate between Homogeneous and Heterogeneous Databases.

 Answer: Homogeneous databases use the same DBMS across all nodes, while heterogeneous databases use different DBMS types or versions across nodes in a distributed environment.

6. Discuss Distributed Data Storage strategies in distributed databases.

 Answer: Distributed data storage strategies include partitioning, replication, and fragmentation to optimize data access and management across distributed nodes.

Unit-13: Cloud-Based Databases

1. Describe the evolution from collaborative to Cloud computing.

• Answer: Cloud computing evolved from collaborative computing, peer-topeer computing, and distributed computing to provide on-demand access to shared computing resources over the Internet.

2. Explain the functioning of Cloud Computing.

• Answer: Cloud Computing delivers services (IaaS, PaaS, SaaS) over the Internet, allowing users to access and manage computing resources without owning physical infrastructure.

3. Discuss the differences between Distributed Computing and Cloud Computing.

- Answer: Distributed computing focuses on dividing tasks across multiple computers, while Cloud computing provides on-demand access to shared computing resources over the Internet.
- 4. What are the types of Cloud Services?

• Answer: Cloud services include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) to meet different business needs.

5. Explain the differences between Grid Computing and Cloud Computing.

• **Answer:** Grid computing coordinates resources across multiple administrative domains, while Cloud computing delivers services over the Internet through virtualization and resource pooling.

6. Discuss the collaboration and sharing aspects in Cloud Computing.

• Answer: Cloud computing enables collaboration and sharing of resources and applications among users and organizations through shared infrastructure and services.

Unit-14: Introduction to PL/SQL

1. What is PL/SQL?

Answer: PL/SQL (Procedural Language/Structured Query Language) is
Oracle Corporation's procedural extension for SQL that includes procedural constructs such as loops, conditional statements, and error handling.

2. Explain the purpose of PL/SQL blocks.

 Answer: PL/SQL blocks are units of code that contain procedural statements, which can be named or anonymous and are used for executing SQL commands and PL/SQL statements.

3. What are conditional statements in PL/SQL?

• **Answer:** Conditional statements in PL/SQL (IF-THEN-ELSE, CASE) allow the execution of different blocks of code based on specified conditions.

4. Discuss the role of loops in PL/SQL.

• **Answer:** Loops in PL/SQL (FOR LOOP, WHILE LOOP) allow repetitive execution of a block of code until a condition is met or a specified number of iterations are completed.

5. What are cursors in PL/SQL?

- Answer: Cursors in PL/SQL are named SQL work areas used to process a set of rows returned by a query, enabling traversal and manipulation of data row by row.
- 6. Explain the purpose of triggers in PL/SQL.

• **Answer:** Triggers in PL/SQL are named blocks of code that automatically execute in response to events (INSERT, UPDATE, DELETE) on a specific table or view in a database.